Чем отличается система шин от секции шин: определим основные признаки

Обходная система шин: принцип работы и преимущества в электроустановках

Предисловие

Книга «Типовые электрические схемы распределительных устройств электростанций и подстанций. Характеристики. Применение. Оперативные переключения» была издана типографским способом в 2016 году издательством «Универсум» в городе Смоленске. Тираж книги был не большой. В настоящее время в свободном доступе этой книги практически нет. В последние годы не было публикаций по этой теме и других авторов. Поэтому возникла мысль о создании электронной версии данной книги. Книга может быть полезна в качестве дополнительной литературы при изучении дисциплины «Электрическая часть электростанций и подстанций». Её востребованность возрастает в условиях широкого внедрения дистанционных образовательных технологий. На базе этого материала лектор сможет эффективно осуществлять образовательный процесс. Она может быть полезна заинтересованным читателям при изучении другой книги автора «Главные электрические схемы и схемы питания собственных нужд электрических станций и подстанций», вышедшей в издательстве «Инфра-инженерия» ([email protected]) в Вологде в 2020 году. В ней автор рассматривает помимо схем учебного характера схемы реальных электрических станций и подстанций с указанием их конкретных особенностей.

Учитывая требования издателя, в текст книги внесены изменения редакционного характера.

Выражаю слова благодарности за большую работу, проделанную при подготовке книги к изданию, ее редактору Шафоростову Геннадию Павловичу, а также старшему преподавателю кафедры электроэнергетических систем Смоленского филиала МЭИ Вайтеленок Ларисе Витальевне за помощь по созданию большого количества рисунков схем РУ.

Пожелания и замечания просьба присылать по адресу 214 013 г. Смоленск, Энергетический проезд, дом 1, кафедра «Электроэнергетические системы» филиала ФГБОУ ВО «НИУ «МЭИ» в г. Смоленске или непосредственно мне по электронной почте [email protected] с указанием темы письма «о книге»

Марков Владимир Сергеевич

Что такое файл cookie и другие похожие технологии

Файл cookie представляет собой небольшой текстовый файл, сохраняемый на вашем компьютере, смартфоне или другом устройстве, которое Вы используете для посещения интернет-сайтов.

Некоторые посещаемые Вами страницы могут также собирать информацию, используя пиксельные тэги и веб-маяки, представляющие собой электронные изображения, называемые одно-пиксельными (1×1) или пустыми GIF-изображениями.

Файлы cookie могут размещаться на вашем устройстве нами («собственные» файлы cookie) или другими операторами (файлы cookie «третьих лиц»).

Мы используем два вида файлов cookie на сайте: «cookie сессии» и «постоянные cookie». Cookie сессии — это временные файлы, которые остаются на устройстве пока вы не покинете сайт. Постоянные cookie остаются на устройстве в течение длительного времени или пока вы вручную не удалите их (как долго cookie останется на вашем устройстве будет зависеть от продолжительности или «времени жизни» конкретного файла и настройки вашего браузера).

Что такое система шин и почему могут возникать путаницы при определении силового кабеля?

Первоначально воспользуемся определением «система шин» из технической литературы, и поймем, что под данным понятием подразумевается специальный комплект элементов. Эти элементы могут быть связаны между собой, формируя работоспособную энергосистему. Абсолютно все элементы присоединены к электрическим распределительным устройствам, поэтому и способны бесперебойно и по назначению функционировать.

Важно помнить!
Все существующие распределительные устройства на подстанциях отличаются номинальным, то есть прописанным в технических документах, уровнем напряжения, а также определенной мощностью генераторов, трансформаторов. Каждая созданная сеть рассчитана на определенную мощность, режим работы и на количество обслуживаемых объектов.. И если, например, потенциальному заказчику для реализации проекта будет необходимо использовать распределительные устройства с одной системой шин, то само энергооборудование будет содержать выключатель и два разъединителя

Один – шинный, а второй – линейный

И если, например, потенциальному заказчику для реализации проекта будет необходимо использовать распределительные устройства с одной системой шин, то само энергооборудование будет содержать выключатель и два разъединителя. Один – шинный, а второй – линейный.

В кругу специалистов для понятия «система шин» ввели синоним – «сборные шины». И если о них заходит разговор, то каждый понимает, что речь идет о стандартном устройстве, которое представляет собой продуманную систему шинопроводов. И все элементы системы фиксируются на специальных опорах, при этом защищены изоляционным материалом или специальными внешними коробами. Их монтаж проходит в специально отведенных для этого помещениях, технических коридорах. Первостепенная задача системы шин или сборных шин – сформировать энергетический канал с бесперебойной подачей необходимых силовых импульсов к имеющимся объектам и ответвленным магистралям.

Системы шин перед эксплуатацией обязательно тестируются, то есть разработчики и производителя всегда планово проводят типовые испытания систем шин и секций шин, и в этом отличий нет.

Если к системе шин планируют создать отходящие присоединения, то применяют отпайки, через которые и запитывают новые элементы.

Экономическая значимость обходной системы шин

Во-первых, обходная система шин позволяет сократить время простоя оборудования и предотвратить потери производительности. Она обеспечивает возможность переключения энергии и сигналов с основной шины на резервную без необходимости остановки работы. Таким образом, при неисправности или необходимости профилактического обслуживания, процесс может продолжаться без простоя, что способствует снижению затрат и повышению производительности.

Во-вторых, обходная система шин позволяет повысить надежность системы и снизить риски отказа оборудования. При возникновении неисправности на основной шине, автоматически активируется резервная шина, что предотвращает полное прекращение работы и минимизирует возможные последствия. Благодаря этому, производственный процесс не прерывается, что позволяет избежать значительных финансовых и временных потерь, связанных с ремонтом или заменой оборудования.

В-третьих, обходная система шин способствует улучшению экономической эффективности предприятий за счет оптимального использования ресурсов. Переключение между основной и резервной шиной позволяет более эффективно распределять нагрузку и использовать энергию, что уменьшает расходы на электроэнергию и сокращает нагрузку на электропитание. Также, обходная система шин предоставляет возможность для планомерного и согласованного обновления оборудования, что уменьшает затраты на его замену и позволяет более оптимально использовать бюджет предприятия.

Таким образом, обходная система шин играет неотъемлемую роль в повышении экономической эффективности производства и обеспечивает непрерывность работы предприятий, улучшение надежности и оптимальное использование ресурсов. Внедрение и поддержка такой системы является важным шагом для предприятий всех отраслей и позволяет достичь существенных экономических преимуществ.

Силовые коммутационные аппараты

Трансформаторные подстанции при эксплуатации необходимо подключать под напряжение или выводить из работы для профилактического обслуживания или в случае возникновения аварийных ситуаций и неисправностей. С этой целью используются коммутационные аппараты, которые создаются различными конструкциями и могут:

1. отключать аварийные токи максимально возможных величин;

2. коммутировать только рабочие нагрузки;

3. обеспечивать разрыв видимого участка электрической схемы за счет переключения только при снятом с оборудования напряжении.

Коммутационные аппараты, способные отключать аварийные ситуации, работают в автоматическом режиме и называются «автоматическими выключателями». Они создаются с различными возможностями коммутации нагрузок за счет конструктивных особенностей.

По принципу использования запасенной энергии, заложенной в работу исполнительного механизма, их подразделяют на:

  • пружинные;

  • грузовые;

  • давления;

  • электромагнитные.

По способам гашения электрической дуги, возникающей при отключениях, они классифицируются на:

  • воздушные;

  • элегазовые;

  • вакуумные;

  • масляные;

  • автогазовые;

  • электромагнитные;

  • автопневматические.

Для управления исключительно рабочими режимами, характеризующимися только номинальными параметрами сети, создаются «выключатели нагрузки». Мощность их контактной системы и скорость работы позволяют успешно переключаться при обычном состоянии схемы. Но, ими нельзя оперировать для ликвидации коротких замыканий.

При разрыве электрической цепи под нагрузкой создается электрическая дуга, которая ликвидируется конструкцией выключателя. В обесточенной схеме для отделения определенного участка от напряжения используют более простые устройства:

1. разъединители;

2. отделители.

Разъединителями оперируют, как правило, вручную при снятом напряжении. На подстанциях 330 кВ и выше управление разъединителями осуществляется электродвигателями. Это объясняется большими габаритами и механическими усилиями, которые сложно преодолеть вручную.

При включении разъединителя участок его цепи собирается в электрическую схему, а при отключении — выводится.

Отделители создаются для автоматического разделения напряжения с защищаемого участка при создании на нем бестоковой паузы удаленным выключателем. 

Что такое секции шин и насколько они важны для функционирования шинопроводов?

В технической литературе имеется определение «секций шин», и оно звучит следующим образом: секции шин – это определенные части системы шин, отделенные друг от друга коммутационными аппаратами. В сущесвующих ГОСТах прописаны различные типы секционирования. И чаще всего выделяют шесть типовых форм секционирования, а именно:

  1. Системы шин без внутреннего разделения, когда главная шина, вводные и выводные функциональные блоки, распределительные шины функционируют одной системой, не разделяются на блоки перегородками или барьерами.
  2. Системы шин с разделением шин и узлов функционирования, но при этом зажимы для внешних проводников от шин не разделяются барьерами из металла или пластика.
  3. Сегментирование шин и функциональных узлов с зажимами внешних проводников.
  4. Разделение функциональных узлов друг от друга, а также от имеющихся шин. Дополнительно барьерами отделены зажимы внешних проводников от блоков, но с шинами у них остается взаимосвязь.
  5. Разделение всех имеющихся в системе функциональных узлов друг от друга, а также от шин. Зажимы внешних проводников находятся в одном блоке, поэтому отделены и от шин, и от функциональных узлов. При таком сегментировании легко проводить испытания секции сборных шин, ее ремонтировать и вводить в эксплуатацию.
  6. Система шин, когда функциональные узлы находятся в одном отсеке с зажимами внешних проводников.

Таким образом, существует шесть типов сегментирования, когда проявляются разные варианты изоляции и взаимодействия главной шины, функциональных блоков, распределительных шин, зажимов для отходящих проводников. При любой комплектации система шин работоспособна.

Конструкция закрытых распределительных устройств (ЗРУ)

  1. Строительная часть ЗРУ выполняется из стандартных железобетонных элементов. Габариты зданий ЗРУ должны быть кратны: длина — 6 м, ширина — 3 м, высота — 0,6 м.
  2. Электрические аппараты и токоведущие части размещаются так, чтобы выдерживались установленные наименьшие изоляционные расстояния в воздухе между проводниками разных фаз, а также от проводников до заземлённых конструкций и частей здания. Не огражденные токоведущие части должны быть недоступны для случайного прикосновения.

Практически рекомендуемые расстояния между осями фаз составляют:
для 6 кВ — 250-500 мм; для 10 кВ — 300-700 мм; для 35 кВ — 500-700 мм; для 110 кВ — 1250-1600 мм; для 220 кВ — 3000 мм.
Неизолированные токоведущие части, расположенные над полом на высоте меньше 2,5 м в установках 6-10 кВ и 2,7 м в установках 35 кВ, должны ограждаться сетками, причём высота прохода под сеткой должна быть не менее 1,9 м.

  1. Длина ЗРУ определяется его схемой, принятой конфигурацией сборных шин, количеством и размером ячеек.

Для обслуживания сборных ЗРУ и перемещения оборудования предусматриваются коридоры обслуживания и коридоры управления. Ширина коридоров обслуживания в свету между ограждениями принимается не менее 1 м при одностороннем расположении оборудования и 1,2 м при двухстороннем. В коридорах управления указанные размеры должны быть увеличены соответственно до 1,5 и 2 м. Количество выходов из ЗРУ принимается исходя из его длины: при длине РУ до 7 м допускается один выход, расположенный таким образом, чтобы расстояние от любой точки коридора до выхода было не более 30 м.
Отечественные заводы изготавливают КРУ с односторонним и двухсторонним обслуживанием. При двухстороннем обслуживании КРУ ширина прохода с задней стороны КРУ должна быть не менее 0,8 м. Расположение шкафов КРУ в здании РУ может быть однорядным и двухрядным. При однорядном расположении КРУ ширина коридора управления должна быть больше длины выкатной тележки не менее чем на 0,6 м, но не менее 1,5 м, а при двухрядном расположении больше длины тележки на 0,8 м, но не менее 2 м.

  1. Токоограничивающие реакторы располагаются в отдельных камерах ЗРУ. Размещение реакторов в цепях трансформаторов может быть выполнено в пристройках к зданию РУ с горизонтальным расположением фаз в один ряд или по треугольнику. Линейные и групповые реакторы размещаются в ячейках вертикально в виде колонн из трёх фаз. Наличие линейных реакторов, как правило, приводит к необходимости сооружения ЗРУ смешанного типа.
  2. Силовые и контрольные кабели на понижающих подстанциях небольшой и средней мощности могут выводиться из РУ либо через трубы, либо до выхода их наружу могут быть проложены в кабельных каналах, закрытых съёмными плитами. При большом количестве кабелей устраиваются специальные кабельные сооружения: тоннели, кабельные подвалы. Кабели прокладываются вдоль стен на конструкциях, выполненных в виде полок. Высота тоннеля в свету должна быть не менее 1,8 м. Наименьшее расстояние в свету между конструкциями для прокладки кабелей при двухрядном их расположении — 1 м, от конструкций до стены при однорядном расположении конструкций — 0,9 м.
  3. Подводка от трансформатора до ЗРУ выполняется шинами: посредством гибких связей или в виде шинного моста. Вводы в здание РУ осуществляются через проходные изоляторы. Для трансформаторов небольшой мощности может быть выполнен кабельный ввод.

Вводы в шкафы КРУ выполняются по-разному: сверху, сбоку или сзади. Схемы вводов также могут быть весьма разнообразными: глухое присоединение к сборным шинам КРУ, через разъединитель или штепсельные разъединяющие контакты и выключатель. В связи с этим выбор вводов следует производить обязательно по каталогам.

Обходная система — шина

Обходная система шин, к которой разъединителями / могут быть подсоединены ВЛ вводов, специальным силовым обходным выключателем 12 соединена с главной системой шин. Такое расположение разъединителей называют развилкой. Назначение обходной системы шин и обходного выключателя — замена любого ввода при работах на нем. Для этого включают разъединители 1 и 13 ( соответствующего ввода и обходного выключателя) со стороны обходной системы шин, а также разъединители 10 или / / — со стороны главной системы шин на нужную секцию. Затем включают обходной выключатель и отключают выключатель 4 соответствующего ввода.

Обходная система шин используется для ревизии выключателей линий и транс ( юрматоров.

Обходная система шин расположена внутри здания, что позволяет применять это ЗРУ в загрязненных зонах промышленных предприятий. Рассматриваемый вариант может быть применен для узловых подстанций ( УРП) промышленных предприятий в загрязненных зонах. Этот вариант отличается компактностью.

Обходная система шин используется только при выводе в ремонт выключателя какого-либо присоединения. Однако в условиях нормальной схемы обходную систему шин также целесообразно ставить под напряжение. Не под напряжением находятся резервные силовые трансформаторы, а также оборудование с.

Обходная система шин дает возможность вывести в ревизию или в ремонт рабочую систему шин и любой выключатель без перерыва питания. Ее можно присоединить к любой из основных систем шин через обходной выключатель.

Обходная система шин может быть применена как при двух основных ( рабочих) системах, так и при одной системе. На промышленных предприятиях обходная система шин применяется сравнительно редко, например на крупных УРП районного значения с большим числом присоединений.

Обходная система шин в РУ НО-220 кВ охватывает выключатели всех присоединений. В схеме с одной секционированной системой сборных шин используют отдельные обходные выключатели на каждой секции шин. В схеме с двумя несекционированными системами сборных шин используют отдельный обходной выключатель, в схеме же с секционированием-совмещенные обходной и шиносоеди-нительный выключатели на каждой секции. В закрытых РУ допускается в этом случае иметь отдельные шиносоеди-нительные и обходные выключатели, если их совмещение конструктивно невозможно.

Обходная система шин дает возможность вывести в ревизию или в ремонт любую рабочую систему шин и любой выключатель без перерыва питания. Обходную систему шин можно присоединить к любой из основных систем шин через обходный выключатель.

Схемы узловых распределительных подстанций промышленных предприятий, питаемых от энергосистемы.| Схема крупной узловой распределительно-трансформаторной подстанции на напряжение 110 — 220 кв с применением обходной системы шин.

Обходная система шин дает возможность вывести в ревизию или в ремонт любую рабочую систему шин и любой выключатель без перерыва питания. Обходную систему шин можно присоединить к любой из основных систем шин через отдельный обходной выключатель.

Обходная система шин в РУ ПО-220 кВ охватывает выключатели всех присоединений. В схеме с одной секционированной системой сборных шин используют отдельные обходные выключатели на каждой секции шин. В схеме с двумя несекционированными системами сборных шин используют отдельный обходной выключатель, в схеме же с секционированием-совмещенные обходной и шиносоеди-нительный выключатели на каждой секции. В закрытых РУ допускается в этом случае иметь отдельные шиносоеди-нительные и обходные выключатели, если их совмещение конструктивно невозможно.

Обходная система шин дает возможность вывести в ревизию или в ремонт любую рабочую систему шин и любой выключатель без перерыва питания.

Схемы мощных ГПП с одной секционированной системой шин на вторичном напряжении с групповым реактированием отходящих линий.

Обходная система шин ( рис. 2 — 44) предусматривается, когда необходимы маневренность и гибкость оперативных переключений, а также когда требуется частая ревизия выключателей по характеру их работы, например на электропечных подстанциях. Она позволяет вывести в ревизию или в ремонт любую рабочую систему шин и любой выключатель без перерыва питания. Обходную систему шин можно присоединить к любой системе шин через отдельный обходной выключатель.

Обходная система шин дает возможность вывести в ревизию или в ремонт любую рабочую систему шин и любой выключатель без перерыва питания. Ее можно присоединить к любой из основных систем шин через отдельный обходной выключатель.

Защиты, автоматика, системы управления

Работа оборудования трансформаторной подстанции происходит в автоматическом режиме под дистанционным наблюдением оперативного персонала. Чтобы предотвратить серьезные повреждения внутри сложной дорогостоящей системы применяются автоматические защитные устройства.

Они имеют чувствительные датчики, которые воспринимают начало возникновения аварийных процессов и, обрабатывая полученную информацию, передают ее на защиты.

Такими датчиками могут работать механические приборы, реагирующие на:

  • повышение температуры;

  • возникновение вспышки света;

  • резкое возрастание давления внутри закрытой ячейки;

  • образование дыма;

  • начало газообразования внутри жидкостей или другие признаки.

Однако, основная нагрузка по определению начала аварийных режимов возложена на электрические устройства — измерительные трансформаторы тока и трансформаторы напряжения.

Они с высокой точностью моделируют электрические процессы, происходящие в первичной схеме силового оборудования и передают их в органы сравнения, которые определяют момент возникновения неисправностей.

Полученный сигнал от них воспринимают логические блоки, обрабатывающие поступившую информацию для передачи исполнительной команды на отключающие устройства конкретных автоматических выключателей.

У малогабаритных трансформаторных подстанций, размещенных внутри крытых сооружениях, защиты могут располагаться в отдельной ячейке или шкафу.

На подстанциях, преобразующих напряжение 110 кВ и выше, для размещения релейных вторичных цепей требуется отдельное здание с большим количеством панелей. На них монтируют системы управления, автоматики и защиты:

  • каждого трансформатора;

  • ошиновки;

  • шин;

  • отходящих линий;

  • пожаротушения.

К этим устройствам подключаются системы сигнализации, работающие в местном и дистанционном режиме для передачи оперативному персоналу достоверных сведений о происходящих коммутациях в электрической сети. Наиболее важная информация о положении ответственных элементов оборудования передаются по каналам телесигнализации.

Используемые многие десятилетия релейные защиты постепенно вытесняются микропроцессорными малогабаритными модулями, облегчающими эксплуатацию.

Однако, их массовое использование сдерживается высокой стоимостью и отсутствием точных международных стандартов для всех производителей. Ведь при поломке отдельного специфичного блока пользователю приходится обращаться к конкретному заводу для замены возникшей неисправности.

Комплектные распределительные устройства внутренней и наружной установки

Комплектные распределительные устройства (КРУ) широко распространены при сооружении промышленных и городских подстанций, главных РУ электростанций средней и малой мощности, РУ собственных нужд мощных электростанций.
Камеры и шкафы КРУ изготовляются заводами, электромонтажными организациями и фирмами, что позволяет добиться тщательной сборки всех узлов и обеспечения надежной работы электрооборудования. Камеры и шкафы с полностью собранным и готовым к работе оборудованием поступают на место монтажа, где их устанавливают, соединяют сборные шины на стыках камер и шкафов, подводят силовые и контрольные кабели. Применение КРУ позволяет ускорить монтаж распределительного устройства. КРУ безопасно в обслуживании, так как все части, находящиеся под напряжением, закрыты металлическим кожухом.
В качестве изоляции между токоведущими частями в КРУ могут быть использованы воздух, масло, пирален, твердая изоляция, инертные газы. КРУ с масляной и газовой изоляцией могут изготовляться на высокие напряжения (в мировой практике есть конструкции на 220,400 и 500 кВ).
Камеры и шкафы КРУ изготовляют различных серий с различными схемами первичных и вторичных цепей. Наличие шкафов с различными схемами первичных цепей позволяет комплектовать их согласно принятой схемы электрических соединений установки.
КРУ внутренней установки выполняют в виде камер типа КСО (камера стационарная, одностороннего обслуживания) или шкафов типа КРУ. В таких устройствах аппараты размещены в зданиях и, следовательно, защищены от атмосферных осадков, ветра, резких изменений температуры, а также от пыли, морской соли, вредных химических реагентов в воздухе.
Комплектные распределительные устройства наружной установки (КРУН) предназначены для открытой установки вне помещения. КРУН состоят из металлических шкафов со встроенными в них аппаратами, приборами, устройствами защиты и управления.
Шкафы КРУН имеют уплотнения, обеспечивающие защиту аппаратуры от загрязнения и атмосферных осадков. Так как шкафы не абсолютно герметичны, то КРУН не предназначены для работы в среде с влажностью воздуха более 80 %, опасной в отношении взрыва и пожара, а также в среде с химически активными газами и токопроводящей пылью. КРУН рассчитаны для работы при температурах окружающего воздуха от 40 до +35 С. В некоторых сериях КРУН предусматривается искусственный подогрев воздуха внутри шкафа для создания условий, препятствующих конденсации влаги при резких колебаниях температуры наружного воздуха.
КРУН могут иметь стационарную установку выключателя в шкафу или выкатную тележку с выключателем подобно КРУ внутренней установки. Преимущества выкатного исполнения были отмечены выше.
Шкафы КРУН широко применяются для комплектных трансформаторных подстанций и в открытых РУ электростанций и подстанций. Так же как и КРУ, они разработаны для схемы с одной системой шин.
КРУН может иметь различную конструкцию в зависимости от применяемого оборудования, различные схемы главных и вспомогательных соединений, поэтому при выборе их надо ориентироваться на сетку схем и каталожные данные.

Для чего надо рекомендуется выполнять сегментацию шин и почему без этого не обойтись?

Для разделения основных элементов системы шин используют перегородки или металлические барьеры. Они необходимы, чтобы повысить безопасность персонала, который обслуживает энергосистему и локализировать нежелательные процессы.

При правильной сегментации ремонтные работы не будут останавливать процесс, все формы секционирования НКУ позволяют все восстановить быстро, без остановки системы.

Таким образом, обходная секция шин позволяет создать достойную функционирующую систему шинопроводов, которые и легко монтировать, и обслуживать, то есть вовремя выполнять технические осмотры, тестирование, ремонтные работы. В итоге становится понятно, что система шин – это комплект шинопроводов, которые для оптимизации лучше поддавать сегментированию, чтобы улучшить процесс подачи энергоимпульса при обслуживании нескольких силовых линий или объектов.

2) Когда обе СШ находятся под напряжением.

В
первом варианте короткое замыкание на рабочей СШ приводит к потере всех присоединений.

Если источники питания и линии равномерно распределить между СШ, то во втором варианте при КЗ на любой СШ теряется лишь половина присоединений. При эксплуатации схемы в таком режиме шиносоединительный выключатель QA постоянно включен и выполняет функции секционного выключателя.

При использовании этой схемы в ГРУ, одну из СШ (рабочую) секционируют. Число секций обычно равно числу генераторов.

Существенный недостаток схемы состоит в том, что она не позволяет ремонтировать выключатели без отключения присоединений.

Понравилась статья? Поделиться с друзьями:
Автоэксперт
Добавить комментарий

;-) :| :x :twisted: :smile: :shock: :sad: :roll: :razz: :oops: :o :mrgreen: :lol: :idea: :grin: :evil: :cry: :cool: :arrow: :???: :?: :!: