Физика-демокурс

Угловое ускорение

Не можем остановиться: момент импульса

Допустим, нам нужно остановить космический корабль с массой 40 т, который находится на околоземной орбите. Для этого потребуется затратить немалые усилия. Почему? Все дело во вращательном импульсе космического корабля.

В главе 9 подробно описывается понятие импульс материальной точки, который выражается следующей формулой:

где ​\( m \)​ — это масса, a ​\( v \)​ — скорость материальной точки.

По аналогии, при описании вращательного движения физики используют понятие вращательный импульс (который в русскоязычной научной литературе чаще называют моментом импульса материальной точки. — Примеч. ред.):

где ​\( l \)​ — это момент инерции, а ​\( \omega \)​ — угловая скорость материальной точки.

Момент импульса в системе СИ измеряется в кг·м2·с-1 (более подробно системы единиц измерения описываются в главе 2). Одним из наиболее важных свойств момента импульса является закон сохранения момента импульса.

Сохраняем момент импульса

Закон сохранения момента импульса гласит: момент импульса сохраняется, если равна нулю сумма всех моментов внешних сил. Этот закон проявляется во многих обыденных ситуациях. Например часто приходится видеть, как мастера фигурного катания на льду вращаются с широко разведенными в стороны руками, а затем резко приближают их к своему телу и сильно ускоряют свое вращение. Дело в том, что таким образом они уменьшают свой момент инерции и, согласно закону сохранения момента импульса, увеличивают свою угловую скорость. Зная начальную угловую скорость вращения фигуриста ​\( \omega_0 \)​ и его моменты инерции в позе с разведенными руками ​\( I_0 \)​ и в позе с сомкнутыми руками ​\( I_1 \)​, легко найти конечную угловую скорость ​\( \omega_1 \)​ по формуле:

Однако этот закон удобно использовать не только в таких простых ситуациях. Возвращаясь к примеру с космическим кораблем на околоземной орбите, следует отметить, что его орбита далеко не всегда является строго круглой. Чаще всего орбиты спутников Земли и других планет имеют эллиптическую форму. Поэтому без закона сохранения момента импульса было бы гораздо сложнее определять параметры их орбитального движения.

Пример закона сохранения момента импульса: вычисляем скорость спутника

Предположим, что космический корабль вращается на эллиптической орбите вокруг Плутона. Причем в самой близкой к Плутону точке орбиты спутник находится на расстоянии 6·106 м от центра Плутона и имеет скорость 9·103 м/с. Вопрос: какой будет скорость спутника в самой далекой точке эллиптической орбиты на расстоянии 2·107 м от центра Плутона?

Для ответа на этот вопрос нужно воспользоваться законом сохранения момента импульса, поскольку на спутник не действуют никакие внешние моменты сил (сила гравитационного притяжения направлена параллельно радиусу и не создает момента). Однако закон сохранения момента импульса нужно преобразовать так, чтобы вместо угловых скоростей в его формулировке фигурировали тангенциальные скорости.

Итак, рассмотрим формулу закона сохранения момента импульса:

где ​\( I_{бл} \)​ — это момент инерции спутника в самой близкой точке, \( I_{дал} \) — это момент инерции спутника в самой далекой точке, \( \omega_{бл} \) — угловая скорость спутника в самой близкой точке, а \( \omega_{дал} \) — угловая скорость спутника в самой далекой точке.

Предположим, что размеры спутника гораздо меньше расстояния до центра Плутона и спутник можно считать материальной точкой. Тогда его моменты инерции равны:

и

где ​\( r_{бл} \)​ — это расстояние от спутника до центра Плутона в самой близкой точке эллиптической орбиты, а \( r_{дал} \) — это расстояние от спутника до центра Плутона в самой далекой точке эллиптической орбиты.

Кроме того:

и

Подставляя все перечисленные соотношения в формулу закона сохранения момента импульса

получим:

Отсюда путем несложных алгебраических преобразований, получим:

Подставляя значения, получим:

Итак, в ближайшей к Плутону точке орбиты спутник будет иметь скорость 9000 м/с, а в самой дальней — 2700 м/с. Этот результат мы легко получили только благодаря знанию закона сохранения момента импульса.

Пример решения задачи на нахождение момента инерции

Рассмотрим два примера. Первая задача – на нахождение момента инерции. Вторая задача – на использование теоремы Гюйгенса-Штейнера.

Задача 1. Найти момент инерции однородного диска массы m и радиуса R. Ось вращения проходит через центр диска.

Разобьем диск на бесконечно тонкие кольца, радиус которых меняется от до R и рассмотрим одно такое кольцо. Пусть его радиус – r, а масса – dm. Тогда момент инерции кольца:

Массу кольца можно представить в виде:

Здесь dz – высота кольца. Подставим массу в формулу для момента инерции и проинтегрируем:

В итоге получилась формула для момента инерции абсолютного тонкого диска или цилиндра.

Задача 2. Пусть опять есть диск массы m и радиуса R. Теперь нужно найти момент инерции диска относительно оси, проходящей через середину одного из его радиусов.

Момент инерции диска относительно оси, проходящей через центр масс, известен из предыдущей задачи. Применим теорему Штейнера и найдем:

Кстати, в нашем блоге Вы можете найти и другие полезные материалы по физике и решению задач.

Надеемся, что Вы найдете в статье что-то полезное для себя. Если в процессе расчета тензора инерции возникают трудности, не забывайте о студенческом сервисе. Наши специалисты проконсультируют по любому вопросу и помогут решить задачу в считанные минуты.

Осевые моменты инерции некоторых тел

Моменты инерции однородных тел простейшей формы относительно некоторых осей вращения

Материальная точка массы m

На расстоянии r от точки, неподвижная

Полый тонкостенный цилиндр или кольцо радиуса r и массы m

Сплошной цилиндр или диск радиуса r и массы m

Полый толстостенный цилиндр массы m с внешним радиусом r2 и внутренним радиусом r1

Сплошной цилиндр длины l, радиуса r и массы m

Ось перпендикулярна к цилиндру и проходит через его центр масс

Полый тонкостенный цилиндр (кольцо) длины l, радиуса r и массы m

Ось перпендикулярна к цилиндру и проходит через его центр масс

Прямой тонкий стержень длины l и массы m

Ось перпендикулярна к стержню и проходит через его центр масс

Тонкостенная сфера радиуса r и массы m

Ось проходит через центр сферы

Шар радиуса r и массы m

Ось проходит через центр шара

Конус радиуса r и массы m

Равнобедренный треугольник с высотой h, основанием a и массой m

Ось перпендикулярна плоскости треугольника и проходит через вершину

Правильный треугольник со стороной a и массой m

Ось перпендикулярна плоскости треугольника и проходит через центр масс

Квадрат со стороной a и массой m

Ось перпендикулярна плоскости квадрата и проходит через центр масс

Тонкостенный цилиндр (кольцо, обруч)

Момент инерции тела равен сумме моментов инерции составляющих его частей. Разобъём тонкостенный цилиндр на элементы с массой dm и моментами инерции dJi. Тогда

Поскольку все элементы тонкостенного цилиндра находятся на одинаковом расстоянии от оси вращения, формула (1) преобразуется к виду

Толстостенный цилиндр (кольцо, обруч)

Пусть имеется однородное кольцо с внешним радиусом R, внутренним радиусом R1, толщиной h и плотностью ρ. Разобьём его на тонкие кольца толщиной dr. Масса и момент инерции тонкого кольца радиуса r составит

Момент инерции толстого кольца найдём как интеграл

Поскольку объём и масса кольца равны

получаем окончательную формулу для момента инерции кольца

Однородный диск (сплошной цилиндр)

Рассматривая цилиндр (диск) как кольцо с нулевым внутренним радиусом (R1 = 0), получим формулу для момента инерции цилиндра (диска):

Разобьём конус на тонкие диски толщиной dh, перепендикулярные оси конуса. Радиус такого диска равен

где R – радиус основания конуса, H – высота конуса, h – расстояние от вершины конуса до диска. Масса и момент инерции такого диска составят

Сплошной однородный шар

Разобъём шар на тонкие диски толщиной dh, перпендикулярные оси вращения. Радиус такого диска, расположенного на высоте h от центра сферы, найдём по формуле

Масса и момент инерции такого диска составят

Момент инерции сферы найдём интегрированием:

Для вывода воспользуемся формулой момента инерции однородного шара радиуса R:

Вычислим, насколько изменится момент инерции шара, если при неизменной плотности ρ его радиус увеличится на бесконечно малую величину dR.

Тонкий стержень (ось проходит через центр)

Разобъём стержень на малые фрагменты длиной dr. Масса и момент инерции такого фрагмента равна

Тонкий стержень (ось проходит через конец)

При перемещении оси вращения из середины стержня на его конец, центр тяжести стержня перемещается относительно оси на расстояние l/2. По теореме Штейнера новый момент инерции будет равен

Геометрические характеристики плоских сечений

При некоторых видах деформаций прочность и жесткость (способность противостоять деформации) элементов конструкций зависит не только от величины поперечного сечения, но и от формы этого сечения.
Самый простой пример — обыкновенную школьную линейку можно легко изогнуть относительно широкой стороны поперечного сечения и совершенно невозможно изогнуть относительно его короткой стороны. При этом общая площадь сечения в обоих случаях одинакова. На основании этого примера становится очевидным, что на сопротивление некоторым видам деформации оказывает влияние (иногда — решающее) не только величина площади сечения бруса, но и его геометрическая форма.
При изучении деформаций изгиба и кручения нам потребуется знание некоторых геометрических характеристик плоских сечений, которые оказывают влияние на способность конструкций сопротивляться деформациям относительно той или иной оси либо полюса (точки).

Чтобы понять суть явления и влияния этих геометрических характеристик на сопротивление бруса, например, изгибу, следует обратиться к основополагающим постулатам сопромата. Как известно из установленного в 1660 году английским физиком Робертом Гуком закона, напряжение в сечениях бруса прямо пропорционально его относительному удлинению. Очевидно, что волокна, расположенные дальше от оси изгиба, растягиваются (или сжимаются) сильнее, чем расположенные вблизи оси. Следовательно, и напряжения возникающие в них будут бόльшими.
Можно привести условную сравнительную аналогию между напряжением в разных точках сечения бруса с моментом силы — чем больше плечо силы — тем больше ее момент (относительно оси или точки). Аналогично — чем дальше от какого-либо полюса (оси) отстоит точка в сечении, тем большее напряжение в ней возникает при попытке изогнуть или скрутить брус относительно этого полюса (оси).

***

Статический момент площади

Статическим моментом площади плоской фигуры относительно оси, лежащей в той же плоскости, называется взятая по всей площади сумма произведений элементарных площадок (Si) на расстояния (ri)от них до этой оси.

Если упростить это определение, то статический момент инерции плоской фигуры относительно какой-либо оси (лежащей в той же плоскости, что и фигура) можно получить следующим образом:

  • разбить фигуру на крохотные (элементарные) площадки (рис. 1);
  • умножить площадь каждой площадки на расстояние ri от ее центра до рассматриваемой оси;
  • сложить полученные результаты.

Статический момент площади плоской фигуры обозначают S с индексом оси, относительно которой он рассматривается: Sx, Sy, Sz.

Sx = Σ y dA;        Sy = Σ x dA.

Анализ этих формул позволяет сделать вывод, что статический момент площади фигуры относительно оси, лежащей в этой же плоскости, равен произведению площади фигуры на расстояние от ее центра тяжести до этой оси.
Из этого вывода следует еще один вывод — если рассматриваемая ось проходит через центр тяжести плоской фигуры, то статический момент этой фигуры относительно данной оси равен нулю.

Единица измерения статического момента площади — метр кубический (м3).
При определении статического момента площади сложной фигуры можно применять метод разбиения, т. е. определять статический момент всей фигуры, как алгебраическую сумму статических моментов отдельных ее частей. При этом сложная геометрическая фигура разбивается на простые по форме составные части — прямоугольники, треугольники, окружности, дуги и т. п., затем для каждой из этих простых фигур подсчитывается статический момент площади, и определяется алгебраическая сумма этих моментов.

***

Полярный момент инерции

Полярным моментом инерции плоской фигуры относительно полюса (точки), лежащего в той же плоскости, называется сумма произведений элементарных площадок (Si) этой фигуры на квадрат их расстояний (r2i) до полюса.
Полярный момент инерции обозначают Iρ (иногда его обозначают Jρ), а формула для его определения записывается так:

Iρ = Σ ρ2 dA.

Единица измерений полярного момента инерции — м4, из чего следует, что он не может быть отрицательным.
Понятие полярного момента инерции понадобится при изучении деформаций кручения круглых валов, поэтому приведем формулы для определения полярного момента квадратного, круглого и кольцевого сечения.

Вычисляем момент инерции протяженного объекта

Момент инерции легко вычисляется для очень маленького (точечного) объекта, если все точки объекта расположены на одинаковом расстоянии от точки вращения. Например в предыдущем примере, если считать, что мячик для игры в гольф гораздо меньше длины нити, то все его точки находятся на одинаковом расстоянии от точки вращения, равном радиусу окружности вращения ​\( r \)​. В таком случае момент инерции имеет знакомый вид:

где \( r \) — это расстояние, на котором сосредоточена вся масса мячика \( m \).

Однако такая идеальная ситуация имеет место далеко не всегда. А чему равен момент инерции протяженного объекта, например стержня, вращающегося относительно одного из своих концов? Ведь его масса сосредоточена не в одной точке, а распределена по всей длине. Вообще говоря, для определения момента инерции протяженного объекта нужно просуммировать моменты инерции всех материальных точек объекта:

Например, момент инерции ​\( l \)​ системы из двух “точечных” мячиков для игры в гольф с одинаковой массой ​\( m \)​ на расстояниях ​\( r_1 \)​ и ​\( r_2 \)​ равен сумме их отдельных моментов инерции ​\( l_1=mr_1^2 \)​ и \( l_2=mr_2^2 \):

А как определить момент инерции диска, вращающегося относительно своего центра? Нужно мысленно разбить диск на множество материальных точек, вычислить момент инерции каждой такой точки и просуммировать полученные моменты инерции. Физики научились вычислять моменты инерции для многих объектов со стандартной формой. Некоторые из них приведены в табл. 11.1.

Попробуем вычислить моменты инерции нескольких предметов с простой геометрией.

Пример: замедление вращения компакт-диска

Компакт-диски могут вращаться с разными угловыми скоростями. Это необходимо для обеспечения одинаковой линейной скорости считывания информации на участках, находящихся на разных расстояниях от центра вращения. Пусть диск массой 30 г и диаметром 12 см сначала вращается со скоростью 700 оборотов в секунду, а спустя 50 минут — со скоростью 200 оборотов в секунду. Какой средний момент сил действует на компакт-диск при таком уменьшении скорости? Связь момента сил и углового ускорения имеет вид:

Момент инерции диска с радиусом ​\( r \)​, вращающегося относительно своего центра в плоскости диска, выражается формулой:

Подставляя значения, получим:

Теперь нужно определить угловое ускорение, которое определяется следующей формулой:

Изменение угловой скорости ​\( \Delta\omega \)​ произошло за промежуток времени:

В данном примере изменение угловой скорости:

где ​\( \omega_1 \)​ — конечная, а \( \omega_0 \) — начальная угловая скорость компакт-диска.

Чему они равны? Начальная скорость 700 оборотов в секунду означает, что диск за секунду 700 раз проходит ​\( 2\pi \)​ радиан:

Аналогично, конечная скорость 200 оборотов в секунду означает, что диск за секунду 200 раз проходит \( 2\pi \) радиан:

Подставляя значения в формулу углового ускорения, получим:

Подставляя значения момента инерции и углового ускорения в итоговую формулу момента силы, получим:

Итак, средний момент равен 10-4 Н·м, а чему будет равна сила для создания такого момента, если она приложена к краю диска? Ее величину легко вычислить по следующей формуле:

Оказывается, для такого замедления компакт-диска нужно приложить не такую уж и большую силу.

Еще один пример: поднимаем груз

Вращательное движение порой внешне выглядит не так очевидно, как вращение ком- пакт-диска. Например подъем груза с помощью блока также является примером вращательного движения. Хотя канат и груз движутся поступательно, но сам блок вращается (рис. 11.2). Пусть радиус блока равен 10 см, его масса равна 1 кг, масса груза равна 16 кг, а к веревке прилагается сила 200 Н. Попробуем вычислить угловое ускорение блока.

В данном примере нужно вычислить сумму всех моментов сил ​\( \mathbf{\sum\! M} \)​, которые действуют на веревку:

В данном примере на веревку действует два момента сил: один ​\( M_1 \)​ со стороны груза весом ​\( mg \)​, а другой \( M_2 \) — со стороны горизонтальной силы ​\( F \)​:

Отсюда получаем формулу для углового ускорения:

Эти моменты ​\( M_1 \)​ и \( M_2 \) имеют одинаковое плечо, равное радиусу блока ​\( r \)​, поэтому:

Поскольку блок имеет форму диска, то из табл. 11.1 находим его момент инерции:

Подставляя выражения для ​\( l \)​, ​\( M_1 \)​ и ​\( M_2 \)​ в формулу для углового ускорения, получим:

Подставляя значения, получим:

2.2.3. Первый закон Ньютона

Законы Ньютона представляют собой обобщение опытных данных (фактов). Эти законы устанавливались на основании наблюдений медленных по сравнению со скоростью света в вакууме движений.

1-й закон Ньютона

Всякая материальная точка или тело сохраняет состояние покоя или равномерного прямолинейного движения, пока на них не действуют силы или действие сил скомпенсировано.

Этот закон называется законом инерции, а движение точки или тела, свободных от внешних воздействий, называется движением по инерции.

Покой — частный случай равномерного прямолинейного движения, когда а = 0 и v = const, или v = 0.

Любое механическое движение — относительное движение, его характер зависит от системы отсчета. Закон инерции справедлив не во всех системах отсчета.

Системы, в которых выполняется первый закон Ньютона, называются инерциальными.

Системы, в которых не выполняется первый закон Ньютона, называются неинерциальными.

Инерциальных систем бесконечно много. Любая система, движущаяся относительно данной инерциальной системы равномерно и прямолинейно, является также инерциальной системой.

Что такое момент инерции

Рисунок 1. Поперечное сечение стержня. Где-то я его уже видел…

Суть и смысл моментов инерции в общем случае походит на статические моменты, однако корни нужно искать в описании вращения тела. Для вращательного движения одного только значения массы тела недостаточно, требуется еще знать распределение этой массы в теле. Рассмотрим вращающееся тело, как совокупность точек с предельно малыми размером и массой, которые находятся на расстояниях Ri (от нуля до R):

Где:T — кинетическая энергия;J — момент инерции;m — масса; v — скорость; w — угловая скорость;R — радиус;

Тут видно, что также, как в формуле кинетической энергии при линейном движении мера инертности — масса, при вращательном движении мера инертности — момент инерции. Впрочем, я немного забегаю вперёд.

Угловая скорость вращающегося тела — угол поворота, пройденный за единицу времени

Тут начальный угол поворота φ может быть равен нулю, если мы рассматриваем начало движения. 

Линейная скорость тела:

где r — расстояние от рассматриваемой точки до оси вращения

Ускорение вращающегося тела (а нас интересует нормальное) тогда:

Я не буду затрагивать динамику вращающегося тела, и расскажу только о жизненно необходимом.

Сила (которая по второму закону Ньютона — произведение массы на ускорение):

и момент:

И вот тут вспомним уже третий закон Ньютона — действию всегда есть равное и противоположное противодействие, а значит действию найденного нами момента будет сопротивляться — момент инерции.

Вспомним также, что, как и со статическими моментами, на разные точки тела, удаленные от оси вращения на разные расстояния будет действовать разный момент, а общий момент можно получить их просуммировав:

При этом значения вращающего момента и момента инерции будут равны, а сами моменты направлены в противоположные стороны. При постоянной угловой скорости вращения, например w = 1, основными величинами, характеризующими вращающий момент или момент инерции будут масса материальных точек, составляющих тело, и расстояния от этих точек до оси вращения. Но, как я уже показал, рассказывая про статические моменты, массу точек для изотропных (в данном случае имеющих одинаковую плотность) объектов можно выносить за скобки и рассматривать исключительно геометрию. Формула момента инерции примет следующий вид:

Почему Iр? Потому что мы с вами оперировали радиусом и углом поворота (в формуле угловой скорости) — т.е. использовали полярную систему отсчета (что и демонстрирует индекс p).

Таким образом момент инерции является мерой инертности тела при вращательном движении, подобно тому как масса является мерой инертности тела при поступательном прямолинейном движении.

Примеры расчетов

Пример 1

Для цилиндра с массой 2 кг и радиусом 0,5 м, известна формула для момента инерции I=1/2mr^2. Поэтому момент инерции этого цилиндра равен:

I = 1/2 x 2 кг x (0,5 м)^2 = 0,5 кг∙м^2

Пример 2

При работе тяжелой техники, необходимо учитывать массу и момент инерции составляющих ее деталей, таких как карданные валы. Для карданного вала длиной 1,5 м и массой 40 кг, применим формулу момента инерции для цилиндра, в которую входит длина вала:

I = 1/2 x m x r^2 + 1/12 x m x L^2, где r – радиус вала, L – длина вала.

Пусть радиус вала составляет 0,03 м, тогда:

I = 1/2 x 40 кг x (0,03 м)^2 + 1/12 x 40 кг x (1,5 м)^2 = 0,0273 кг∙м^2

Пример 3

Для расчета момента инерции шара, необходимо применять специальную формулу I=2/5mr^2. Рассчитаем момент инерции металлического шара массой 5 кг и радиусом 0,2 м:

I = 2/5 x 5 кг x (0,2 м)^2 = 0,4 кг∙м^2

Пример 4

Для расчета момента инерции полого цилиндра, применяется формула I=1/2m(R1^2+R2^2), где R1 и R2 — внутренний и внешний радиусы соответственно. Рассчитаем момент инерции полого цилиндра массой 10 кг, внутренним радиусом 0,5 м и внешним радиусом 0,8 м:

I = 1/2 x 10 кг x (0,5 м)^2 + (0,8 м)^2 = 0,55 кг∙м^2

Задачи на Законы Ньютона с решениями

Формулы, используемые на уроках «Задачи на Законы Ньютона с решениями».

Задача № 1.
 Какое ускорение приобретет тело массой 500 г под действием силы 0,2 Н?

Задача № 2.
 Сила 30 Н сообщает телу ускорение 0,4 м/с. Какая сила сообщит тому же телу ускорение 2 м/с2 ?

Задача № 3.
 Какую скорость приобретает тело массой 3 кг под действием силы, равной 9 Н, по истечении 5 с?

Задача № 4.
 Сколько времени потребуется автомобилю массой 700 кг, чтобы разогнаться из состояния покоя до скорости 72 км/ч, если сила тяги двигателя 1,4 кН?

Задача № 5.
 Поезд массой 500 т, трогаясь с места, через 25 с набрал скорость 18 км/ч. Определите силу тяги.

Задача № 6.
 Под действием постоянной силы, равной 10 Н, тело движется прямолинейно так, что зависимость координаты тела от времени описывается уравнением х = 3 — 2t + t2. Определите массу тела.

Задача № 7.
 Скорость тела массой 2 кг изменяется со временем так, как представлено на графике рисунка.
Найдите силу, действующую на каждом этапе этого движения. Определите по графику, на каком этапе движения тело прошло наибольший путь.

Задача № 8. (повышенной сложности)
 Начальная скорость тела, находящегося в точке А, равна нулю. В течение 8 с на тело действует постоянная сила. Затем направление силы изменяется на противоположное, а модуль остается прежним. Через какое время от начала движения тело вернется в точку А?

Ответ: через 27 с.

Задача № 9. (повышенной сложности)
 Самолет массой 14 т, пройдя по взлетной полосе путь 600 м, приобретает необходимую для отрыва от поверхности Земли скорость 144 км/ч. Считая движение равноускоренным, определите время разгона, ускорение и силу, сообщающую самолету это ускорение.

Задача № 10.
  ОГЭ
 Вагон массой m = 20 т движется равнозамедленно с ускорением а = 0,3 м/с2 и начальной скоростью v= 54 км/ч. Найти силу торможения, действующую на вагон, время его движения до полной остановки и путь, пройденный за это время.

Задача № 11.
   ЕГЭ
 Два тела массами m1 = 1 кг и m2 = 2 кг, находящиеся на гладкой горизонтальной поверхности, связаны нерастяжимой нитью. Ко второму телу в горизонтальном направлении приложена сила F = 10 Н. Найти ускорение а, с которым движутся оба тела, и силу Т натяжения нити.

Раздел механики, изучающий законы Ньютона, называется динамикой. Если при изучении кинематики рассматривается вопрос: как тело движется (равномерно, равноускоренно и т. д.), то динамика дает ответ: почему тело движется так, а не иначе.

Если . Существуют такие системы отсчета, относительно которых тело сохраняет свою скорость неизменной, если на него не действуют другие тела (или их действие скомпенсировано), (или равнодействующая всех сил, действующих на тело, равна нулю).

Если Если на тело действует постоянная сила (или несколько сил), то тело движется с постоянным ускорением. Причем ускорение тела прямо пропорционально равнодействующей сил, приложенных к телу, и обратно пропорционально его массе. Вектор ускорения сонаправлен с вектором равнодействующей сил.

При решении простых задач, где на тело действует только одна сила, можно применять формулу сразу. Если же на тело действует несколько сил, то нужно делать чертеж и геометрическим путем определять направление равнодействующей сил.

  1. Силы появляются парами.
  2. Силы одной природы.
  3. Силы приложены к разным телам, поэтому не могут уравновешивать друг друга.

Например, Земля притягивает к себе тело массой 1 кг с силой 9,8 Н. Камень точно с такой же силой притягивает к себе Землю. Однако ускорения эти тела приобретают различные, так как у них разные массы. Камень получает большое ускорение вследствие своей малой массы, а Земля получает мизерное ускорение вследствие своей огромной массы.

Задачи на Законы Ньютона повышенной сложности — это задачи на движение тела под действием нескольких сил: по наклонной плоскости, движение связанных тел и т. д.

Это конспект по теме «ЗАДАЧИ на Законы Ньютона с решениями». Выберите дальнейшие действия:

  • Перейти к теме: ЗАДАЧИ на применение Закона всемирного тяготения
  • Посмотреть конспект по теме ДИНАМИКА: вся теория для ОГЭ (шпаргалка)
  • Вернуться к списку конспектов по Физике.
  • Проверить свои знания по Физике.

Центральный момент инерции

Центральный момент инерции
(момент инерции относительно точки O, момент инерции относительно полюса, полярный момент инерции
)
J
O
{\displaystyle J_{O}}

— это величина, определяемая выражением :

J
a
=

(m)
r
2
d
m
=

(V)
ρ
r
2
d
V
,
{\displaystyle J_{a}=\int \limits _{(m)}r^{2}dm=\int \limits _{(V)}\rho r^{2}dV,}

Центральный момент инерции можно выразить через главные осевые моменты инерции, а также через моменты инерции относительно плоскостей :

J
O
=
1
2
(J
x
+
J
y
+
J
z)
,
{\displaystyle J_{O}={\frac {1}{2}}\left(J_{x}+J_{y}+J_{z}\right),}

J
O
=
J
x
O
y
+
J
y
O
z
+
J
x
O
z
.
{\displaystyle J_{O}=J_{xOy}+J_{yOz}+J_{xOz}.}

Геометрические моменты инерции

Геометрический момент инерции объёма относительно оси — геометрическая характеристика тела, выражаемая формулой:

где, как и ранее r — расстояние от элемента dV до оси a.

Размерность JVa — длина в пятой степени ( d i m J V a = L 5 {displaystyle mathrm {dim} J_{Va}=mathrm {L^{5}} } ), соответственно единица измерения СИ — м5.

Геометрический момент инерции площади относительно оси — геометрическая характеристика тела, выражаемая формулой:

где интегрирование выполняется по поверхности S, а dS — элемент этой поверхности.

Размерность JSa — длина в четвёртой степени ( d i m J S a = L 4 {displaystyle mathrm {dim} J_{Sa}=mathrm {L^{4}} } ), соответственно единица измерения СИ — м4. В строительных расчетах, литературе и сортаментах металлопроката часто указывается в см4.

Через геометрический момент инерции площади выражается момент сопротивления сечения:

Здесь rmax — максимальное расстояние от поверхности до оси.

Причина возникновения ускорения

Из курса 7 класса нам уже известно, что скорость тела (и ее направление, и численное значение) может измениться только под действием другого тела. Иными словами, изменение скорости — это результат взаимодействия нашего тела с каким-то другим телом. Мерой этого взаимодействия является сила ($\vec F$).

Например, яблоко падает на землю под действием силы тяжести (рисунок 1, а). Мы можем сказать, что сама Земля действует на яблоко с силой $\vec F_{тяж} = m \vec g$.

Или Образавр толкает перед собой тележку с продуктами (рисунок 1, б). Тележка движется, потому что Образавр действует на нее с какой-то силой $\vec F$.

Рисунок 1. Движение тел под воздействием некоторых сил

Итак, скорость тела изменяется. Она либо возрастает, либо уменьшается. Это означает, что в этот момент тело движется с некоторым ускорением.

Что является причиной ускоренного движения тел?Причиной ускоренного движения тела является действие на это тело других тел с некоторой силой.

{"questions":,"answer":}}}]}

1.4. Центробежный момент инерции сечения Jxy

Центробежный
момент инерции сечения равен сумме
произведений элементарных площадок на
расстояния до обеих осей

(12)

Единица
измерения , .

Знак
«+» или «-».

,
если координатные оси являются осями
симметрии (пример – двутавр, прямоугольник,
круг), или одна из координатных осей
совпадает с осью симметрии (пример –
швеллер).

Таким
образом для симметричных фигур
центробежный момент инерции равен 0.

Координатные
оси u

иv

,
проходящие через центр тяжести сечения,
относительно которых центробежный
момент равен нулю, называютсяглавными
центральными осями инерции сечения.
Главными они называются потому, что
центробежный момент относительно них
равен нулю, а центральными – потому,
что проходят через центр тяжести сечения.

У
сечений, не обладающих симметрией
относительно осей x

илиy

, например у
уголка,не будет равен нулю. Для этих сечений
определяют положение осейu

иv

с помощью
вычисления угла поворота осейx

иy

(13)

Центробежный
момент относительно осей u

иv

Формула
для определения осевых моментов инерции
относительно главных центральных осей
u

иv

:

(14)

где
— осевые моменты инерции относительно
центральных осей,

— центробежный момент инерции относительно
центральных осей.

Первый закон Ньютона

Первый закон Ньютона гласит:

Проще говоря, суть первого закона Ньютона можно сформулировать так: если мы на абсолютно ровной дороге толкнем тележку и представим, что можно пренебречь силами трения колес и сопротивления воздуха, то она будет катиться с одинаковой скоростью бесконечно долго.

Инерция – это способность тела сохранять скорость как по направлению, так и по величине, при отсутствии воздействий на тело. Первый закон Ньютона еще называют законом инерции.

До Ньютона закон инерции был сформулирован в менее четкой форме Галилео Галилеем. Инерцию ученый называл «неистребимо запечатленным движением». Закон инерции Галилея гласит: при отсутствии внешних сил тело либо покоится, либо движется равномерно. Огромная заслуга Ньютона в том, что он сумел объединить принцип относительности Галилея, собственные труды и работы других ученых в своих «Математических началах натуральной философии».

Понятно, что таких систем, где тележку толкнули, а она покатилась без действия внешних сил, на самом деле не бывает. На тела всегда действуют силы, причем скомпенсировать действие этих сил полностью практически невозможно.

Например, все на Земле находится в постоянном поле силы тяжести

Когда мы передвигаемся (не важно, ходим пешком, ездим на машине или велосипеде), нам нужно преодолевать множество сил: силу трения качения и силу трения скольжения, силу тяжести, силу Кориолиса

 

2.2.5. Третий закон Ньютона

В первом и во втором законах Ньютона речь идет о силах, действующих на данное тело, и его движении под действием этих сил, но нет упоминания о других телах, со стороны которых эти силы действуют. Роль второго тела во взаимодействии отражена в третьем законе Ньютона.

3-й закон Ньютона

Силы, с которыми два тела действуют друг на друга, равны по величине, направлены в противоположные стороны F12 = — F21.

F12 — сила, действующая со стороны второго тела на первое, приложена к первому телу, F21 — сила, действующая на второе тело со стороны первого, приложена ко второму телу (Рисунок 9).

Рисунок 9 — Взаимодействие двух тел.

Обобщение и подведение итогов

Момент инерции является мерой инертности тела при вращательном движении, подобно тому как масса является мерой инертности тела при поступательном прямолинейном движении. В статике момент инерции применяется в определении прогибов, расчетах конструкций на касательные и нормальные напряжения. Момент инерции также, как и статические моменты, характеризует положение осей относительно сечения элемента. Так у нас появляются:

Центральные оси, проходящие через центр тяжести фигуры, т. е. статические моменты относительно этих осей равны нулю.

Главные оси, в которых центробежный момент инерции (Ixy) равен нулю, а осевые моменты инерции — максимальны. Если фигура имеет хотя бы одну ось симметрии, то эта ось является главной осью.

При этом главные и центральные оси могут совпадать!

Список использованных источников

  1. Александров А.В. Сопротивление материалов: Учеб. для ВУЗов/ А.В. Александров, В.Д. Потапов, Б.П. Державин; под ред. А.В. Александрова – 3-е изд. испр. – М.: Высш. шк., 2003. – 560 с.: ил. ISBN 5-06-003732-0
  2. Дарков А.В., Шпиро Г.С. Сопротивление материалов – Учеб. для техн. вузов – 5-е изд. перераб. и дополн. – М.: Высш. шк., 1989 – 624 с. ил.
  3. Г.И. Беликов. Геометрические характеристики поперечных сечений стержней. Учебно-практическое пособие. — Волгоград: ВолгГАСУ, 2015. — 56 с. — ISBN 978-5-98276-752-3

7 452

V. Вывод формулы для определения момента инерции.

hh1h2

При
опускании
нижнего диска
потенциальная энергия переходит в
кинетическую энергию вращательного
движения

где I – момент инерции нижнего диска,
угловая скорость диска.

Вмомент прохождения диском поло­жения
равновесия угловая скорость,
а, следовательно, и кинетическая энергия,
принимает максимальное значение, т.е.

Если
пренебречь трением, то на основании
закона сохранения энер­гии для
колеблющегося диска можно записать:

Угловая
скорость ,
являющаяся первой производной от
сме­щенияпо времени, может
быть записана

Максимальное
значение угловой скорости равно:

.
(3)

На
основании выражений (2) и (3) имеем:

Найдем
величину hпри
повороте диска на малый угол ,
считая, что h1 + h2 2l:

.
(5)

Из
рис.1 ясно, что

и .

Подставляя
значение

Вследствие
малости угла

Подставив
выражения (3) и (6) в формулу (2), получим:

,
или

где

1. Определение момента инерции i0 диска без нагрузки.

а)
Заставить диск совершать крутильные
колебания с малой амплитудой (10 15 градусов). Секундомером измерить времяtсовершенияnполных колебаний (n– задаётся преподавателем). Все измерения
провести несколько раз. Все значения
занести в табл.1.

б)
Провести статистическую обработку
времени tпо
методу Стьюдента.

в)
Определить период колебаний диска Т =

tn

г)
Занести в табл.2 массу диска Ми постоянную установкиk.

д)
По формуле (7) рассчитать значение момента
инерции диска I,
результат занести в таблицу 2.

е)
Вычислить относительные и абсолютные
погрешности по формулам (8) – (9) и занести
результаты в таблицу 3.

(8)

Абсолютная
погрешность периода колебаний определяется
следующим образом

Таблица
1

/№

п/п

t

t

t2

Sn

t(,n)

tсл

tпр

t

n

T

T

с

с

с2

с

с

c

с

с

с

1

2

3

cреднее

Таблица
2

k

M

m

d

I

I1

I2

I3

м2с–2

кг

кг

м

кгм2

кгм2

кгм2

кгм2

Среднее

значение

Абсолютная

погрешность

510-4

Относительная

погрешность

Понравилась статья? Поделиться с друзьями:
Автоэксперт
Добавить комментарий

;-) :| :x :twisted: :smile: :shock: :sad: :roll: :razz: :oops: :o :mrgreen: :lol: :idea: :grin: :evil: :cry: :cool: :arrow: :???: :?: :!: