В призму вписан цилиндр найти площадь боковой поверхности цилиндра

Решение задач.стереометрия

Решение №2305 Цилиндр вписан в правильную четырёхугольную призму. Радиус основания и высота цилиндра равны 3.

Цилиндр вписан в правильную четырёхугольную призму. Радиус основания и высота цилиндра равны 3. Найдите площадь боковой поверхности призмы.

Правильной четырёхугольной призмой – называется шестигранник, в основаниях которого находятся 2 квадрата, а боковые грани представлены прямоугольниками. Площадь боковой поверхности данной призмы – это площадь 4-х равных прямоугольников. Длина прямоугольника равна диаметру цилиндра, ширина прямоугольника равна высоте цилиндра.

Найдём площадь боковой поверхности призмы:

Sбок. поверх. = 4·Sпрямоугольника = 4· h ·( r + r ) = 4·3·(3 + 3) = 4·3·6 = 72

Уроки арифметики на русском языке

  • Урок №2. Сложение натуральных чисел
  • Урок №3. Вычитание натуральных чисел
  • Урок №4. Таблица умножения
  • Урок №5. Умножение натуральных чисел
  • Урок №6. Деление натуральных чисел
  • Урок №8. Величины и их измерение
  • Урок №10. Делимость чисел
  • Урок №13. Обыкновенные дроби
  • Урок №15. Сложение дробей
  • Урок №16. Вычитание дробей
  • Урок №17. Умножение дробей
  • Урок №18. Деление дробей
  • Урок №21. Конечные десятичные дроби
  • Урок №22. Сложение десятичных дробей
  • Урок №23. Вычитание десятичных дробей
  • Урок №24. Умножение десятичных дробей
  • Урок №25. Деление десятичных дробей
  • Урок №26. Округление чисел
  • Урок №1. Отношение величин
  • Урок №2. Пропорции
  • Урок №6. Проценты
  • Урок №7. Нахождение процентов данного числа
  • Урок №12. Среднее арифметическое
  • Урок №14. Масштаб

Цилиндр вписан в правильную треугольную призму найдите площадь поверхности цилиндра

Шар вписан в цилиндр. Площадь полной поверхности цилиндра равна 18. Найдите площадь поверхности шара.

Прямоугольный параллелепипед описан около цилиндра, радиус основания и высота которого равны 1. Найдите объем параллелепипеда.

Прямоугольный параллелепипед описан около цилиндра, радиус основания которого равен 4. Объем параллелепипеда равен 16. Найдите высоту цилиндра.

В куб вписан шар радиуса 1. Найдите объем куба.

В основании прямой призмы лежит прямоугольный треугольник с катетами 6 и 8. Боковые ребра равны Найдите объем цилиндра, описанного около этой призмы.

В основании прямой призмы лежит квадрат со стороной 2. Боковые ребра равны Найдите объем цилиндра, описанного около этой призмы.

Цилиндр и конус имеют общие основание и высоту. Объём конуса равен 25. Найдите объём цилиндра.

Из единичного куба вырезана правильная четырехугольная призма со стороной основания 0,5 и боковым ребром 1. Найдите площадь поверхности оставшейся части куба.

Цилиндр и конус имеют общие основание и высоту. Найдите объем конуса, если объем цилиндра равен 150.

Объём куба, описанного около сферы, равен 216. Найдите радиус сферы.

Конус описан около правильной четырехугольной пирамиды со стороной основания 4 и высотой 6. Найдите его объем, деленный на

Во сколько раз объем конуса, описанного около правильной четырехугольной пирамиды, больше объема конуса, вписанного в эту пирамиду?

В куб с ребром 3 вписан шар. Найдите объем этого шара, деленный на

Около куба с ребром описан шар. Найдите объем этого шара, деленный на

Вершина A куба с ребром 1,6 является центром сферы, проходящей через точку A1. Найдите площадь S части сферы, содержащейся внутри куба. В ответе запишите величину

Цилиндры, вписанные в призмы. Свойства призмы, описанной около цилиндра

      Определение 1. Цилиндром, вписанным в призму, называют такой , окружности которого вписаны в , являющиеся , а (рис. 1).

Рис.1

      Определение 2. Если цилиндр вписан в призму, то призму называют описанной около цилиндра.

      Прежде, чем перейти к вопросу о том, в какую же призму можно вписать цилиндр, докажем следующее свойство призм.

       Утверждение 1. Если в можно вписать окружности, то отрезок, соединяющий центры вписанных окружностей, будет параллелелен и равен

      Доказательство. Рассмотрим призму   A1A2 … AnA’1A’2 … A’n,   у которой в   A1A2 … An   и   A’1A’2 … A’n   можно вписать окружности. Пусть в нижнее   A1A2 … An   призмы   A1A2 … AnA’1A’2 … A’n   вписана окружность с центром   O   радиуса   r,   которая касается прямой   A1A2   в точке   K .   Проведем через точку   O   прямую, параллельную   A1A’1   призмы и пересекающую плоскость верхнего в точке   O’   (рис. 2).

Рис.2

      Вследствие плоскость   KOO’  параллелельна боковому ребру   A1A’1 ,   а ее линия пересечения   KK’   с боковой гранью призмы   A1A2A’1A’2     Замечая, что отрезки   OK   и   O’K’  , заключаем, что четырехугольник   OO’K’K   – .

      Поскольку   OK  – это радиус окружности, проведенный в точку касания окружности радиуса   r   с центром   O   и прямой A1A2 ,   то   . Значит, и   O’K’ = r   и угол   O’K’A’1   равен 90°, то есть

     Рассуждая аналогичным образом, заключаем, что точка   O’  равноудалена от всех прямых, на которых лежат ребра верхнего основания   A’1A’2,   A’2A’3,   … ,   An – 1An,   а поскольку  O’   лежит в плоскости верхнего основания, то точка   O’   является центром вписанной в многоугольник   A’1A’2 … A’n   окружности.

      В силу того, что прямые   OO’   и   A1A’1   параллельны по построению, а прямые OA1   и   O’A’   параллельны как линии пересечения двух параллельных плоскостей третьей плоскостью, замечаем, что четырехугольник   OO’A1A’1   является , откуда вытекает равенство:   OO’ = A1A’1.

      Утверждение 1 доказано.

      Теорема. В призму можно вписать цилиндр тогда и только тогда, когда выполнены следующие два условия:

  1. Призма является ;
  2. В основания призмы можно вписать окружности.

      Доказательство. Докажем сначала, что если в   n – угольную призму вписан цилиндр, то оба условия теоремы выполнены.

      Действительно, выполнение условия 2 следует непосредственно из Докажем, что выполняется и условие 1, т.е. докажем, что описанная около цилиндра призма является прямой призмой.

      С этой целью рассмотрим ось цилиндра   OO’ ,   соединяющую центры окружностей, вписанных в нижнее и верхнее основания призмы (рис. 3).

Рис.3

      Согласно отрезок   OO’   параллелен боковым ребрам призмы. Поскольку ось цилиндра   OO’   перпендикулярна к плоскостям его оснований, то и боковые ребра призмы также перпендикулярны к плоскостям оснований, то есть призма является прямой призмой.

      Таким образом, мы доказали, что, если призма описана около цилиндра, то оба условия теоремы выполнены.

      Теперь рассмотрим   h,   в основания которой можно вписать окружности, и докажем, что в такую призму можно вписать цилиндр.

      Обозначим буквой   O   центр окружности радиуса   r,   вписанной в нижнее основание призмы, а символом   O’   обозначим центр окружности, вписанной в верхнее основание призмы (рис. 4).

Рис.4

      Поскольку многоугольники, лежащие в основаниях призмы равны, то и радиусы вписанных в них окружностей будут равны. Согласно отрезок   OO’   параллелен и равен боковому ребру призмы. Так как рассматриваемая призма прямая, то ее боковые ребра перпендикулярны плоскости основания и равны высоте призмы   h.   Значит, и отрезок   OO’   перпендикулярен плоскости основания призмы и равен   h.

     Цилиндр с осью   OO’,   радиусом   r   и высотой   h   и будет вписан в исходную призму.

      Доказательство теоремы завершено.

      Следствие 1 . , описанной около цилиндра, равна

      Следствие 2. В любую можно вписать цилиндр.

      Справедливость этого утверждения вытекает из того факта, что

      Следствие 3. В любую можно вписать цилиндр.

      Для доказательства этого следствия достаточно заметить, правильная призма является прямой призмой. Основаниями правильной призмы являются правильные многоугольники, а в любой правильный n – угольник можно вписать окружность.

Уроки арифметики на українській мові

  • Урок №2. Додавання натуральних чисел
  • Урок №3. Віднімання натуральних чисел
  • Урок №4. Таблиця множення
  • Урок №5. Множення натуральних чисел
  • Урок №6. Ділення натуральних чисел
  • Урок №8. Величини та їх вимірювання
  • Урок №10. Подільність чисел
  • Урок №13. Звичайні дроби
  • Урок №15. Додавання дробів
  • Урок №16. Віднімання дробів
  • Урок №17. Множення дробів
  • Урок №18. Ділення дробів
  • Урок №21. Кінечни десяткові дроби
  • Урок №22. Додавання десяткових дробів
  • Урок №23. Віднимання десяткових дробів
  • Урок №24. Множення десяткових дробів
  • Урок №25. Ділення десяткових дробів
  • Урок №18. Нескінченний десятковий дріб
  • Урок №19. Відношення величин
  • Урок №20. Пропорції
  • Урок №6. Відсотки
  • Урок №7. Відсотки (2)
  • Урок №12. Середнє арифметичне
  • Урок №14. Масштаб

Заключение

На уроке мы разо­бра­ли ком­би­на­ции приз­мы и ци­лин­дра, а также ре­ши­ли за­да­чи по темам: ци­линдр, опи­сан­ный во­круг приз­мы и ци­линдр, впи­сан­ный в приз­му.

ИСТОЧНИК

http://interneturok.ru/ru/school/geometry/11-klass/btela-vraweniya-b/kombinatsiya-prizmy-i-tsilindra

https://www.youtube.com/watch?v=W5LLg5EJJqI

https://www.youtube.com/watch?v=jfZ6B4hvkjY

http://www.yaklass.ru/p/geometria/11-klass/tela-vrashcheniia-10442/tcilindr-9260/re-04ed80b8-bfe5-4f48-b571-3e5278f08ea8

http://схемо.рф/upload/sx/470/preview/8.jpg

http://1.bp.blogspot.com/-9N8xpfP3SOw/T1TOzXinW2I/AAAAAAAAA9Q/fEXKxGBY99I/s1600/Geom_1.jpg

http://cs405725.vk.me/v405725468/6209/cEdhWBPmpNQ.jpg

https://yandex.ru/images/search?p=4&text=%D0%B7%D0%B0%D0%B4%D0%B0%D1%87%D0%B8%20%D0%BD%D0%B0%20%D0%BA%D0%BE%D0%BC%D0%B1%D0%B8%D0%BD%D0%B0%D1%86%D0%B8%D1%8E%20%D1%86%D0%B8%D0%BB%D0%B8%D0%BD%D0%B4%D1%80%D0%B0%20%D0%B8%20%D0%BF%D1%80%D0%B8%D0%B7%D0%BC%D1%8B&img_url=http%3A%2F%2Fuslide.ru%2Fimages%2F12%2F18580%2F960%2Fimg6.jpg&pos=121&rpt=simage&_=1450898849842

Понравилась статья? Поделиться с друзьями:
Автоэксперт
Добавить комментарий

;-) :| :x :twisted: :smile: :shock: :sad: :roll: :razz: :oops: :o :mrgreen: :lol: :idea: :grin: :evil: :cry: :cool: :arrow: :???: :?: :!: