11 классэлектродинамика (продолжение)

11 классэлектродинамика (продолжение)

СТО 56947007-29.060.10.006-2008 Методические указания по расчету и испытаниям жесткой ошиновки ОРУ и ЗРУ 110-500 кВ

1.5 Выбор шин по нагреву в рабочих режимах

1.5.1 В рабочих режимах температура нагрева шин и не должна превышать допустимого значения

. (1.10)

Допустимые температуры нагрева алюминиевых и медных шин, а также контактных соединений, установленные ГОСТ 8024-90, приведены в табл.1.3. В соответствии с ГОСТ 8024 для шин, не имеющих разъемных контактов (например, сборные шины), допустимая температура составляет 120 °С. Вблизи контактных соединений (например, с выводами аппаратов) допустимая температура шин не должна превышать допустимой температуры контакта, которая для контактов без покрытия составляет 90 °С. Нормативное значение температуры окружающей среды (воздуха) принято равным 40 °С .

Допустимые температуры шин и разъемных контактных соединений

Наименование частей токопроводов и материалов, из которых они изготовлены

Наибольшая допустимая температура нагрева, °С

Токоведущие неизолированные проводники (шины)

Контактные соединения на воздухе:

а) из меди, алюминия и их сплавов без покрытий

б) из меди и медных сплавов с покрытием серебром

с) из алюминия и его сплавов с покрытием серебром

Наибольший рабочий ток, при котором выполняется неравенство (1.10), называется допустимым током (или номинальным током ошиновки ). Поэтому работоспособность шин по условию нагрева в рабочем режиме рекомендуется проверять по условию

, (1.11)

где — наибольший рабочий ток, А.

Наибольший рабочий ток определяется: для сборных шин станций и подстанций, а также в цепи секционных и шиносоединительных выключателей — при наиболее неблагоприятных эксплуатационных условиях (при наибольших перетоках мощности); для цепи трансформаторов — при использовании их перегрузочной способности; для параллельных или взаиморезервирующих цепей — при отключении одной из них; для цепи генератора — при работе с номинальной мощностью и снижении напряжения на 5% от номинального.

Допустимый ток шин следует определять экспериментально или на основании расчетов. Однако допустимый ток шин экспериментально обычно определяется в закрытых помещениях и не может быть напрямую использован для оценки этого параметра в наружных установках.

Оправдано устанавливать допустимый ток шины равным номинальному току электрических аппаратов (например, выключателей или разъединителей) ОРУ.

Для практических оценок рекомендуется использовать расчетные кривые допустимых токов неокрашенных и окрашенных шин из алюминиевого сплава 1915 (1915Т), приведенные на рис.1.2-1.4.

Конденсатор в цепи постоянного тока

Постоянный ток через конденсатор не идет, но заряд на нем накапливается, и напряжение между обкладками поддерживается. Напряжение на конденсаторе такое же, как на параллельном ему участке цепи.

Ток не проходит через те резисторы, что соединены с конденсатором последовательно. При расчете электрической цепи их сопротивления не учитывают.

Подсказки к задачам

Пример №5. К источнику тока с ЭДС ε = 9 В и внутренним сопротивлением r = 1 Ом подключили параллельно соединенные резистор с сопротивлением R = 8 Ом и плоский конденсатор, расстояние между пластинами которого d = 0,002 м. Какова напряженность электрического поля между пластинами конденсатора?

Напряжение на конденсаторе равно напряжению на резисторе, так как он подключен к нему последовательно. Чтобы найти это напряжение, сначала выразим силу тока на этом резисторе:

Применим закон Ома:

Приравняем правые части выражений и получим:

Отсюда напряжение на конденсаторе равно:

Напряженность электрического поля равна:

1.3.33

При напряжении 35 кВ и выше проводники должны быть
проверены по условиям образования короны с учетом среднегодовых значений
плотности и температуры воздуха на высоте расположения данной электроустановки
над уровнем моря, приведенного радиуса проводника, а также коэффициента
негладкости проводников.

При этом наибольшая напряженность поля у поверхности любого
из проводников, определенная при среднем эксплуатационном напряжении, должна
быть не более 0,9 начальной напряженности электрического поля, соответствующей
появлению общей короны.

Проверку следует проводить в соответствии с действующими
руководящими указаниями.

Кроме того, для проводников необходима проверка по условиям
допустимого уровня радиопомех от короны.

РАЗБОРНЫЕ КОНТАКТНЫЕ СОЕДИНЕНИЯ

1. Технология выполнения соединений

1.1. Разборные (болтовые) контактные соединения в зависимости от материала соединяемых шин и климатических факторов внешней среды подразделяются на соединения:

а) без средств стабилизации электротехнического сопротивления;

б) со средствами стабилизации электрического сопротивления.

1.2. Контактные соединения шин из материалов медь-медь, алюминиевый сплав алюминиевый сплав, медь-сталь, сталь-сталь для групп А и Б, а также из материалов алюминиевый сплав-медь и алюминиевый сплав-сталь для группы А не требуют применения средств стабилизации электрического сопротивления. Соединения выполняются непосредственно с помощью стальных крепежных деталей (рис.1 а).

Рис. 1. Разборные контактные соединения

1 — шина медная, из алюминиевого сплава или стали; 2 — алюминиевая шина; 3 — стальная шайба; 4 — тарельчатая пружина; 5 — стальной болт; 6 — стальная гайка; 7 — болт из цветного металла; 8 — гайка из цветного металла; 9 — шайба из цветного металла; 10 — металлопокрытие; 11 — шина медная, алюминиевая, из алюминиевого сплава или стали; 12 — медно-алюминиевая пластина; 13 — пластина из алюминиевого сплава; 14 — шина из алюминиевого сплава

1.3. Контактные соединения шин из материалов алюминий-алюминий, алюминиевый сплав-алюминий для групп А и Б, а также из материалов алюминий-медь и алюминий-сталь для группы А следует выполнять с помощью одного из средств стабилизации сопротивления:

а) тарельчатых пружин по ГОСТ 3057 (рис. 1 б);

б) крепежных изделий из меди или ее сплава (рис. 1 в);

в) защитных металлических покрытий по ГОСТ 21.484, наносимых на рабочие поверхности шин или электропроводящей смазкой типа ЭПС-98 (рис 1 г);

г) переходных медно-алюминиевых пластин по ГОСТ 19357 (рис. 1 д);

д) переходных пластин из алюминиевого сплава (рис. 1 е).

1.4. Для группы Б контактные соединения шин из материалов алюминиевый сплав-медь, алюминиевый сплав-сталь, следует выполнять как показано на рис. 1 д, е; из материалов алюминий-медь, алюминий-сталь — как показано на рис. 1 б, в, д, е.

Рабочие поверхности шин и пластин из алюминия и алюминиевого сплава должны иметь защитные металлопокрытия.

1.5. Пластины из алюминиевого сплава и алюминиевые части медно-алюминиевых пластин следует соединять с алюминиевыми шинами сваркой. Разборные соединения переходных пластин с медными шинами необходимо выполнять с помощью стальных крепежных деталей.

1.6. Расположение и диаметр отверстий для соединения шин шириной до 120 мм приведены в табл. 1.

Зависимость диаметра отверстия в шинах от диаметра стягивающих болтов следующая:

Диаметр болта, мм

6

8

10

12

16

Диаметр отверстия в шинах, мм

6,6

9

11

14

18

Таблица 1  

Размеры, мм

Выполнение

Размеры, мм

соединения

ответвления

b b 1

d

15

20

25

30

40

50

6,6

9

11

11

14

18

60

80

100

120

11

14

18

18

80*

100*

120*

14

18

18

* Примечание только при соединении пакетов шин

1.7. Контактные участки шин шириной 60 мм и более, имеющие два отверстия в поперечном ряду, рекомендуется выполнять с продольными разрезами. Ширина разреза зависит от способа его выполнения и должна быть не более 5 мм.

1.3.28

Проверке по экономической плотности тока не
подлежат:

сети промышленных предприятий и сооружений напряжением до 1
кВ при числе часов использования максимума нагрузки предприятий до 4000-5000;

ответвления к отдельным электроприемникам напряжением до 1
кВ, а также осветительные сети промышленных предприятий, жилых и общественных
зданий;

сборные шины электроустановок и ошиновка в пределах
открытых и закрытых распределительных устройств всех напряжений;

проводники, идущие к резисторам, пусковым реостатам и т.
п.;

сети временных сооружений, а также устройства со сроком
службы 3-5 лет.

Диапазоны рабочих температур AMD

У этого производителя некоторые модели CPU выделяют намного больше тепла, но для нормального функционирования температура любого варианта не должна превышать 90 ºC.

Ниже представлены рабочие температуры у бюджетных процессоров AMD (модели линеек A4 и Athlon X4):

  • Температура в режиме простоя — до 40 ºC;
  • Средние нагрузки — до 60 ºC;
  • При практически стопроцентной загруженности рекомендованное значение должно варьироваться в пределах 85 градусов.

Температуры процессоров линейки FX (средней и высокой ценовой категории) имеют следующие показатели:

  • Режим простоя и умеренные нагрузки аналогичны бюджетным процессорам этого производителя;
  • При высоких нагрузках температура может достигать значения и 90 градусов, однако крайне нежелательно допускать такой ситуации, поэтому эти ЦП нуждаются в качественном охлаждении немного больше других.

Отдельно хочется упомянуть одну из самых дешевых линеек под названием AMD Sempron. Дело в том, что эти модели слабо оптимизированы, поэтому даже при средних нагрузках и некачественном охлаждении при мониторинге вы можете увидеть показатели более 80 градусов. Сейчас эта серия считается устаревшей, поэтому мы не будем рекомендовать улучшать циркуляцию воздуха внутри корпуса или устанавливать кулер с тремя медными трубками, ведь это бессмысленно. Просто задумайтесь о приобретении нового железа.

В рамках сегодняшней статьи мы не указывали критические температуры каждой модели, поскольку практически в каждом ЦП установлена система защиты, автоматически отключающая его при достижении нагрева в 95-100 градусов. Такой механизм не позволит процессору сгореть и убережет вас от возникновения проблем с комплектующим. Помимо всего, вы не сможете даже запустить операционную систему, пока температура не опустится до оптимального значения, а попадете только в BIOS.

Каждая модель CPU, вне зависимости от его производителя и серии, может запросто страдать от перегрева

Поэтому важно не только знать нормальный температурный диапазон, но еще на стадии сборки обеспечить хорошее охлаждение. При покупке боксового варианта ЦП вы получаете фирменный кулер от AMD или Intel и здесь важно помнить, что годятся они исключительно для вариантов из минимального или среднего ценового сегмента

При покупке того же i5 или i7 из последнего поколения всегда рекомендуется приобретать отдельный вентилятор, который обеспечит большую эффективность охлаждения.

Помогла ли Вам статья?

Нет

Упражнения

Упражнение №1

Какое количество теплоты выделится за $30 \space мин$ проволочной спиралью сопротивлением $20 \space Ом$ при силе тока, равной $5 \space А$?

Дано:$t = 30 \space мин$$R = 20 \space Ом$$I = 5 \space А$

СИ:$t = 1800 \space с$

$Q — ?$

Показать решение и ответ

Скрыть

Решение:

Используем закон Джоуля-Ленца:$Q = I^2Rt$.

$Q = 5^2 \space А^2 \cdot 20 \space Ом \cdot 1800 \space с = 900 \space 000 \space Дж = 900 \space кДж$.

Ответ: $Q = 900 \space кДж$.

Упражнение №2

С какой целью провода в местах соединения не просто скручивают, а еще и спаивают? Ответ обоснуйте.

Скручивая один проводник с другим, мы получаем утолщенное и уплотненное место их соединения. Сопротивление на таком участке будет больше, чем у самих проводов. А чем больше сопротивление проводника, тем больше тепла будет выделяться при прохождении по нему электрического тока. Такой участок будет сильно нагреваться.

Спайка же позволяет сделать место соединения проводов более однородным. Это практически не изменяет сопротивления. Таким образом, мы избегаем нагревания проводов в месте их соединения друг с другом.

Упражнение №3

Спираль нагревательного прибора — рефлектора — при помощи шнура и вилки соединяется с розеткой. Шнур состоит из проводов, подводящих ток к спирали, покрытых изоляцией. Спираль и провода соединены последовательно. Как распределяется подаваемое от сети напряжение между проводами и спиралью? Почему спираль раскаляется, а провода почти не нагреваются? Какими особенностями устройства спирали и проводов достигается эта разница?

Будем опираться на закон Джоуля-Ленца: $Q = I^2Rt$.

Спираль раскаляется, а провода — нет. Это означает, что на спирали выделяется намного больше количества теплоты $Q$, чем в проводах. Если сила тока одинакова, значит причина этому — сопротивление $R$.

Поэтому мы делаем вывод, что спираль раскаляется, так как обладает намного большим сопротивлением, чем провода. Такое устройство обуславливается материалами, из которых сделаны спираль и провода. Удельное сопротивление спирали точно больше удельного сопротивления проводов ($R = \frac{\rho l}{S})$. Также провода тоньше спирали. Их площадь поперечного сечения намного меньше площади поперечного сечения спирали нагревательного прибора. Поэтому в проводах выделяется меньшее количество теплоты, чем в спирали.

Что будет с напряжением в такой цепи? Запишем закон Джоуля-Ленца в таком виде: $Q = UIt$. Сказано, что все элементы в этой цепи соединены последовательно. Значит сила тока $I$ во всех ее участках будет одинакова.

Получается, что напряжение на спирали будет больше, чем напряжение на концах проводов. 

Упражнение №4

В цепь источника тока включены последовательно три проволоки одинакового сечения и одинаковой длины: медная, стальная и никелиновая. Какая из них больше нагреется? Ответ обоснуйте и по возможности проверьте на опыте.

Начнем с теории. По закону Джоуля-Ленца: чем больше сопротивление проводника, тем большее количество теплоты выделится в нем. Сила тока на всех участках цепи будет одинакова из-за типа соединения.

Сопротивление проводников рассчитывается по формуле: $R = \frac{\rho l}{S}$. Так как размеры проволок одинаковы, то определять все будет величина удельного сопротивления каждого материала.

Из таблицы возьмем значения удельных сопротивлений:$\rho_{них} = 1.1 \frac{Ом \cdot мм^2}{м}$,$\rho_{ник} = 0.4 \frac{Ом \cdot мм^2}{м}$,$\rho_м = 0.017 \frac{Ом \cdot мм^2}{м}$.

Самым большим сопротивлением будет обладать нихромовая проволока. Она нагреется больше остальных.

Теперь проведем опыт.Соберем электрическую цепь из трех проволок и источника тока. Все элементы соединим последовательно.

Через какое-то время вы сможете увидеть подтверждение нашим теоретическим выводам. Нихромовая проволока нагреется до белого каления, никелиновая — начнет краснеть (рисунок 4). Медная проволока визуально останется такой же. 

Рисунок 4. Зависимость температуры проволоки от сопротивления

Обратите внимание, что визуально оценить эффект нагревания в таком случае проще, чем пробовать при малых температурах определить на ощупь, какая проволока нагрелась больше или пытаться использовать термометр

Электрический ток

Электрический ток в проводниках представляет собой:

в металлах — направленное движение электронов (проводники первого рода);

в электролитах — направленное движение положительных и отрицательных ионов (проводники второго рода);

в плазме — направленное движение электронов и ионов обоих знаков (проводники третьего рода).

За направление электрического тока условились считать направление движения положительно заряженных частиц.

Движение заряженных частиц внутри проводника нельзя наблюдать, но судить о наличии электрического тока можно по его действиям:

  1. тепловому — проводник с током нагревается;
  2. магнитному — вокруг проводника с током возникает магнитное поле;
  3. световому — проводник с током может светиться;
  4. химическому — в проводнике с током изменяется химический состав (такие проводники называются проводниками второго класса).

Для продолжительного существования электрического тока в замкнутой цепи необходимо выполнение следующих условий:

  1. наличие свободных заряженных частиц (носителей тока);
  2. наличие электрического поля, силы которого, действуя на заряженные частицы, заставляют их двигаться упорядоченно;
  3. наличие источника тока, внутри которого сторонние силы перемещают свободные заряды против электростатических (кулоновских) сил.

Количественными характеристиками электрического тока являются сила тока I и плотность тока j.

Сила тока — скалярная физическая величина, равная отношением заряда Δq, проходящего через поперечное сечение проводника за некоторый промежуток времени Δt, к этому промежутку:


\(~I= \dfrac{\Delta q}{\Delta t}.\)

Единицей силы тока в СИ является ампер (А).

Если сила тока и его направление со временем не изменяются, то ток называется постоянным.

Плотность тока j — это векторная физическая величина, модуль которой равен отношению силы тока I в проводнике к площади S поперечного сечения проводника:


$$~j = \frac {I}{S}.$$

В СИ единицей плотности тока является ампер на квадратный метр (А/м2).

*Зависимость силы тока от скорости зарядов

Рассмотрим, как зависит сила тока от скорости упорядоченного движения свободных зарядов.

Выделим участок проводника площадью сечения S и длиной Δl (рис. 1). Заряд каждой частицы q. В объеме проводника, ограниченном сечениями 1 и 2, содержится n∙S∙Δl частиц, где n — концентрация частиц. Их общий заряд \(~\Delta q = q_0 \cdot n \cdot S \cdot \Delta l\).


Рис. 1

Если средняя скорость упорядоченного движения свободных зарядов \(~\left\langle \upsilon \right\rangle\), то за промежуток времени \(~\Delta t = \dfrac{\Delta l}{\left\langle \upsilon \right\rangle}\) все частицы, заключенные в рассматриваемом объеме, пройдут через сечение 2. Поэтому сила тока:


\(~I = \dfrac{\Delta q}{\Delta t} = \dfrac{q_0 \cdot n \cdot \left\langle \upsilon \right\rangle \cdot S \cdot \Delta l}{\Delta l} = q_0 \cdot n \cdot \left\langle \upsilon \right\rangle \cdot S . \qquad (1)\)

Таким образом, сила тока в проводнике зависит от заряда, переносимого одной частицей, их концентрации, средней скорости направленного движения частиц и площади поперечного сечения проводника.

Заметим, что в металлах модуль вектора средней скорости упорядоченного движения электронов \(~\left\langle \upsilon \right\rangle\) при максимально допустимых значениях силы тока ~ 10-4 м/с, в то время как средняя скорость их теплового движения ~ 106 м/с.

Как следует из формулы (1), плотность тока \(~\vec j = q_0 \cdot n \cdot \left\langle \vec \upsilon \right\rangle\).

Направление вектора плотности тока \(~\vec j\) совпадает с направлением вектора скорости упорядоченного движения \(~\left\langle \vec \upsilon \right\rangle\) положительно заряженных частиц. Плотность постоянного тока постоянна по всему поперечному сечению проводника.

Почему нагревается проводник, когда по нему течет электрический ток

Явление нагревания проводника при подключении его к источнику знакомо каждому.

Дадим объяснение этому явлению, рассмотрев протекание тока по металлическому проводнику.

Физический смысл электрического тока — движение заряженных частиц. Любое движущееся тело имеет кинетическую энергию, пропорциональную его скорости и массе. Проводник состоит из частиц: молекул, атомов, элементарных частиц (электронов, протонов, нейтронов).

До начала возникновения тока в проводнике существует так называемый электронный газ, электроны в котором движутся хаотично. При подключении проводника к источнику возникающее электрическое поле совершает работу, вынуждая электроны двигаться упорядоченно в одном направлении. Результатом работы поля будет кинетическая энергия, которая появится у каждого из электронов.

Двигаясь сквозь кристаллические решетки из атомов внутри проводника электроны постоянно сталкиваются с частицами в узлах решетки. По закону сохранению энергии после столкновения часть кинетической энергии свободного электрона выделяется в пространство в виде теплоты — Q.

Описанный процесс справедлив для разных классов проводников: твердых, жидких и газообразных.

Источник тока

Для поддержания в цепи электрического тока необходимо, чтобы на концах ее (рис. 2) существовала постоянная разность потенциалов φ1 – φ2. Пусть в начальный момент времени φ1 > φ2, тогда перенос положительного заряда q от клеммы источника «+» к клемме «–» приведет к уменьшению разности потенциалов между ними . Для сохранения постоянной разности потенциалов необходимо перенести точно такой же заряд от клеммы «–» к клемме «+». Если в направлении от «+» к «–» положительные заряды движутся под действием сил кулоновских сил Fk, то в направлении от «–» к «+» перемещение зарядов происходит против направления действия кулоновских сил, т.е. под действием другой силы Fст, которая называется сторонней силой.


Рис. 2

Сторонние силы — это любые силы, действующие на электрически заряженные частицы, за исключением электростатических (кулоновских) сил.

Сторонние силы возникают в источнике тока.

Источник тока — это устройство, способное поддерживать разность потенциалов между концами электрической цепи и обеспечивать упорядоченное движение электрических зарядов во внешней цепи.

Источники электрического тока могут быть различны по своей конструкции, но в любом из них совершается работа по разделению положительно и отрицательно заряженных частиц. Разделение зарядов происходит под действием сторонних сил. Перечислим наиболее распространенные источники тока:

  1. гальванические элементы (батарейки) (рис. 3, а) и аккумуляторы — сторонние силы используют энергию химических реакций;
  2. генераторы (динамо-машины) — сторонние силы используют механическую энергию падающей воды, ветра, пара и т.п.;
  3. фотоэлементы (солнечные батареи) (рис. 3, б) — сторонние силы используют энергию электромагнитных излучений (света).


Рис. 3

Источник электрического тока имеет два полюса (две клеммы), к которым присоединяются концы проводов.

Проводник, соединяющий клеммы источника снаружи, называют внешним участком цепи. Сопротивление этого источника обозначают R и называют внешним сопротивлением.

Внутри самого источника заряды движутся по внутреннему участку цепи. Сопротивление источника обозначают r и называют внутренним сопротивлением.

Сумма внешнего и внутреннего соспротивлений (R + r) называют полным сопротивлением цепи.

На электрических схемах источник тока обозначается так, как показано на рис. 4. Положительный полюс (клемма) источника условно изображается более длинной чертой, чем отрицательный.


Рис. 4

Любой источник тока характеризуют электродвижущей силой — ЭДС.

ЭДС (Электродвижущей силой) ε источника тока называют физическую скалярную величину, численно равную работе сторонних сил Ast по перемещению единичного положительного заряда внутри источника тока:


\(~\varepsilon = \dfrac{A_{st}}{q} .\)

Единицей электродвижущей силы в СИ является вольт (В).

ЭДС является энергетической характеристикой источника тока.

Термин «электродвигающая сила» был введен Ампером в 1822 г. Аббревиатуру ЭДС принято читать без расшифровки.

Приложение 1

Болты и гайки

Длина болтов

Масса 1000 шт. (стальных), кг. при диаметре резьбы, мм

М6

М8

М10

М12

М16

М20

Болты с шестигранной головкой, ГОСТ 7798

16

5,930

11,80

22,70

32,57

20

6,742

13,25

24,97

35,85

68,49

25

7,871

15,07

27,82

39,95

75,87

136,4

30

8,981

17,35

30,66

44,05

83,24

147,9

32

9,426

18,140

32,03

45,68

86,19

152,5

35

10,090

19,32

33,88

48,43

90,62

159,4

40

11,200

21,30

36,96

52,87

97,99

170,9

45

12,310

23,27

40,05

57,31

105,70

182,5

50

13,42

25,25

43,13

61,76

113,60

194,0

55

14,53

27,22

46,22

66,20

121,50

206,8

60

15,64

29,200

49,30

70,64

129,40

219,1

65

16,76

31,170

52,39

75,08

137,30

231,5

70

17,87

33,14

55,47

79,53

145,20

249,8

75

18,98

35,12

58,56

83,97

153,10

258,1

80

20,09

37,69

61,64

88,42

161.00

268,1

85

21,20

39,07

64,73

92,86

168,90

280,8

90

22,31

41,04

67,81

97,29

176,80

293,2

95

43,02

70,80

101,70

184,70

305,5

100

44,99

73,98

106,20

192,60

317,8

Гайки шестигранные нормальной точности ( ГОСТ 5915)

9,65

16,31

30,08

59,90

117,1

Гайки шестигранные, низкие нормальной точности ( ГОСТ 5916 )

0,948

4,011

8,478

10,610

19,58

34,68

Примечание

Для определения массы болтов и гаек из алюминиевого сплава и латуни массу, указанную в таблице, следует умножить на 0,359 для алюминиевых сплавов и на 1,083 — для латуни.

Понравилась статья? Поделиться с друзьями:
Автоэксперт
Добавить комментарий

;-) :| :x :twisted: :smile: :shock: :sad: :roll: :razz: :oops: :o :mrgreen: :lol: :idea: :grin: :evil: :cry: :cool: :arrow: :???: :?: :!: